“Addressing an Unmet Medical Need in Adult Focal Epilepsy with XEN1101, a Novel Kv7 Modulator”

DR. ERNESTO AYCARDI
CHIEF MEDICAL OFFICER | XENON PHARMA CEUTICALS INC.
FEBRUARY 22, 2021
Xenon’s Ion Channel, Neurology-Focused Pipeline

<table>
<thead>
<tr>
<th>Therapeutic Program</th>
<th>Indication</th>
<th>Pre-clinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>XEN496 (Potassium Channel Modulator)</td>
<td>Orphan Pediatric Epilepsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XEN1101 (Potassium Channel Modulator)</td>
<td>Adult Focal Epilepsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XEN007* (Calcium Channel Inhibitor)</td>
<td>Childhood Absence Epilepsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Channel Modulators</td>
<td>Orphan Channelopathies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBI-921352 (XEN901) and Na\textsubscript{v}1.6/1.2 Sodium Channel Inhibitors</td>
<td>Epilepsy (Orphan Pediatric and Adult Focal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FX301</td>
<td>Post-operative Pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na\textsubscript{v}1.7 Inhibitors</td>
<td>Pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NXN007 is in a physician-led, Phase 2 proof-of-concept study to examine XEN007 as an adjunctive treatment in pediatric patients diagnosed with treatment-resistant childhood absence epilepsy (CAE).
KCNQ2 is a Highly Validated Target

- KCNQ2 dampens neuronal hyper-excitability
- K^+ channels have important inhibitory control over neuronal firing in the CNS
- Repolarize membranes to end the action potential
- K^+ channel opener (potentiator) decreases hyper-excitability in the brain
- Mechanism validated clinically with first-generation K_V potentiator, ezogabine

[Diagram showing neuronal firing and potassium channel activity]
XEN1101 is a Novel, “Next-Gen” K_v7 Channel Modulator

- Potential “only-in-class” K_v7 potassium channel modulator to treat adult focal seizures
- Addresses limitations of first-gen K_v7 modulator, ezogabine
 - No pigmentation or urinary symptoms observed
 - PK addressed (TID → QD)
- Novel MOAs needed for rational polypharmacy approach
- Potential efficacy for common comorbidities, such as depression

Common Pharmacological Actions of Approved Anti-Seizure Medications (ASMs)

- GABA
- Glutamate Receptors
- Sodium Channels
- SV2A & Other Mechanisms

Commonly Prescribed ASMs for Adult Focal Epilepsy
- levetiracetam
- brivaracetam
- carbamazepine
- lamotrigine
- lacosamide
- sodium valproate
XEN1101’s Differentiated Profile in Adult Focal Epilepsy

- Potential for a **highly differentiated profile** within the **adult focal epilepsy space**:

<table>
<thead>
<tr>
<th>Ease of Use</th>
<th>Efficacy</th>
<th>Safety / Tolerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅ Once daily (QD) dosing</td>
<td>✅ Proven anti-seizure mechanism of action</td>
<td>✅ Favorable safety profile and well-tolerated in Phase 1</td>
</tr>
<tr>
<td>✅ No titration; at efficacious doses immediately</td>
<td>✅ Broad efficacy in multiple pre-clinical seizure models as monotherapy or in combination with other ASMs</td>
<td>✅ Evening QD dosing with C_{max} (and related CNS AEs) during sleeping hours</td>
</tr>
<tr>
<td>✅ No significant DDI predicted</td>
<td>✅ Greater effect on TMS target engagement</td>
<td>✅ Low C_{max} to C_{min} provides better tolerability</td>
</tr>
<tr>
<td>✅ Low daily dose</td>
<td>✅ Phase 2b trial modeled for median monthly seizure reduction in the range of currently used ASMs</td>
<td>✅ To date, low drop out rates and high conversion rates to OLE in ongoing blinded Phase 2b trial</td>
</tr>
<tr>
<td>✅ No drug allergic reactions observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✅ Slow elimination could provide coverage for missed doses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Safety / Tolerability

- Favorable safety profile and well-tolerated in Phase 1
- Evening QD dosing with C_{max} (and related CNS AEs) during sleeping hours
- Low C_{max} to C_{min} provides better tolerability
- To date, low drop out rates and high conversion rates to OLE in ongoing blinded Phase 2b trial
XEN1101: Anti-Seizure Activity (vs Ezogabine)

- Maximal Electroshock Stimulus (MES) using 60 Hz bipolar stimulus with CF-1 mice

XEN1101 is 16-fold more potent than ezogabine

- Improved Therapeutic Index of XEN1101 versus Ezogabine

Ezogabine IC\textsubscript{50} = 3.5 uM

XEN1101 IC\textsubscript{50} = 0.22 uM

Mouse ED\textsubscript{50} or TD\textsubscript{50} (Mean: 95% CI)
Combining XEN1101 with Common ASMs Provides Robust Seizure Protection

- Combining ineffective or weakly active doses of XEN1101 and common ASMs enhances robust seizure protection
- Enhanced efficacy is not a drug-drug interaction phenomenon; not explained by changes in plasma levels
- Combination doses were well tolerated
XEN1101 Phase 1 Adaptive Integrated Design

SAD
- placebo n=8
 - 5 mg, n=3
 - 15 mg, n=3
 - 20 mg, n=6
 - 30 mg, n=6
 - food effect, 20 mg, n=10
 - Fed 25 mg, n=6
 - Optional

MAD
- placebo n=6
 - Cohort 1
 - fasted, 15 mg, n=6
 - fed, 15 mg, n=6
 - fed, 25 mg, n=6
 - Optional

TMS Pilot
- Cohort 1
- 15 mg, n=3
- Cohort 2
- 20 mg, n=3
- Cohort 3
- 10 mg, n=2

Ph 1b TMS Cross-over
- Drug
- Placebo
- X
- Placebo
- Drug
- 20 mg, n=20
Phase 1: Summary of Single Dose Findings

- Food enhanced absorption and delayed time to C_{max}
- Long terminal elimination half-life
- Minimal renal excretion of unchanged drug
- Generally well tolerated at up to 30 mg
 - Majority of AEs were mild and CNS related
 - Dizziness, headache, somnolence, myalgia, presyncope and blurred vision were the most common related AEs in SAD cohorts
 - No QT prolongation or safety lab signals
 - No SAEs
Phase 1: Summary of Multiple Dose Findings

- XEN1101 has a PK profile consistent with QD
- Near steady-state within 1 week, full steady-state within 3 weeks
- Absorption is enhanced by food
- Exposure increased dose proportionally (15 - 25 mg QD) in fed state
- Low inter-individual PK variability with repeat dose
- AE profile consistent with MOA (e.g., dizziness, sedation, blurred vision)
- No signal of urinary retention
 - Post-void residual volume normal (bladder ultrasound)
- No safety signals in ECG or safety labs; no SAEs
Phase 1b: Transcranial Magnetic Stimulation (TMS) PD Study

- TMS is a non-invasive tool to study human cortical excitability and target engagement of CNS acting drugs
- Multiple ASMs show effects on TMS at efficacious plasma levels, including ezogabine

EMG:
Resting Motor Threshold (RMT%) reflects cortico-spinal excitability

EEG:
TMS-evoked EEG potentials (TEPs) allow direct evaluation of cortical excitability in a time-resolved fashion manner

Premoli et al., 2014 *Journal of Neuroscience*
Phase 1b XEN1101 Cross-Over Study

- To evaluate the safety, tolerability, pharmacokinetics and TMS effects of XEN1101 in a double-blind, placebo-controlled, cross-over study
 - London, UK (King’s College Hospital)
 - Male healthy volunteers (18-55 years)
 - Single dose, 20 mg
 - N = 20
 - Placebo-controlled, double-blind
 - Cross-over
Phase 1b: XEN1101 Reduced Corticospinal Excitability (TMS-EMG)

Resting Motor Threshold

- **XEN1101 (20mg)**
- **Placebo**
- **XEN1101 Plasma level**

- * $p < 0.05$
- ** $p < 0.01$

- Change from Baseline RMT (% maximum stimulator output)
- Time (h)

Significant increase in RMT indicates reduced corticospinal excitability; strong PK-PD relationship

~2X the effect of ezogabine at 400mg dose (2.4%)

Ossemmann et al., 2016
Phase 1b: XEN1101 Reduced Corticospinal Excitability (TMS-EEG)

- XEN1101 reduced the overall amount of electrical activity induced by TMS

TMS evoked potentials (TEPs)

Global Mean Field Power (GMFP)

![Graphs showing TEP Amplitude and GMFP](image)

Effects shown at time of maximum XEN1101 plasma level (~45 ng/mL) during assessments compared to time matched placebo.

XEN1101 suppressed cortical excitability as evidenced by decreased TEP amplitudes and reduction in GMFP.
Use of Phase 1 and TMS to Inform Dose Selection in Phase 2b

- Simulations based upon PK parameters in Phase 1
- Dose range chosen in Phase 2 will provide two doses with trough levels above effective level in TMS
X-TOLE Study: Randomized, placebo-controlled Phase 2b clinical trial in 300 subjects with focal epilepsy

Endpoints:
- The primary endpoint is median percent change (MPC) from baseline in monthly (28 days) focal seizure frequency in the 8-week double-blind treatment period compared to placebo.
- Secondary endpoints include an evaluation of responder rate compared to placebo, as well as evaluation of changes in weekly seizure frequency and quality of life assessments.

Eligibility criteria include:
- ≥4 countable focal seizures per month during an 8 week baseline period
- Patients on stable treatment with 1-3 ASMs

The study is well powered (around 90% power)
- Designed to detect a monotonic dose response assuming a -20% MPC in placebo and -25%, -30% and -35% MPC at 10, 20 and 25 mg QD XEN1101, respectively

Electronic diary to capture seizures, allowing subjects to be closely monitored for events and compliance
Conclusions

- XEN1101 is a differentiated, next-generation Kv7 potassium channel modulator
- Adult focal epilepsy is a common form of epilepsy with a high unmet medical need
- Safety, tolerability, and ease of use – in addition to efficacy – are important drug attributes for physicians, patients and caregivers
- With its unique pharmaceutical properties, XEN1101 may represent a highly differentiated profile in focal epilepsy space:
 - Proven, “only-in-class” anti-seizure mechanism of action
 - Efficacious as monotherapy and in combination with other ASMs in pre-clinical models
 - Well-tolerated in Phase 1 studies and low drop out in blinded Phase 2b
 - Once daily (QD) evening dosing; no titration; low Cmax to Cmin
 - No significant DDI predicted; low daily dose
- Topline results from X-TOLE Phase 2b clinical trial are expected in the third quarter of 2021

Please refer to these additional presentations at ASENT 2021 to learn more:

Dr. Robin Sherrington, “Kv7 Modulators in Epilepsy and Depression”

Dr. Alison Cutts, “Depression and Anhedonia: Acute Preclinical Efficacy for XEN1101, a Differentiated Kv7 Potassium Channel Modulator”

Dr. J.P. Johnson, Jr., “Anticonvulsant Effects of the Differentiated Kv7 Channel Potentiator XEN1101 in Combination with Commonly Used Anti-Seizure Drugs”
Acknowledgements

Volunteers, Patients, Investigators, Site Personnel, Advisors and Partners involved in the design, implementation, and execution of clinical studies.

Clinical development and drug discovery teams at Xenon Pharmaceuticals Inc.